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Local information transfer as a spatiotemporal filter for complex systems

Joseph T. Lizier,"*™ Mikhail Prokopenko,1 and Albert Y. Zomaya2
lcsiro Information and Communications Technology Centre, Locked Bag 17, North Ryde, NSW 1670, Australia
School of Information Technologies, The University of Sydney, NSW 2006, Australia
(Received 17 January 2007; revised manuscript received 15 August 2007; published 15 February 2008)

We present a measure of local information transfer, derived from an existing averaged information-
theoretical measure, namely, transfer entropy. Local transfer entropy is used to produce profiles of the infor-
mation transfer into each spatiotemporal point in a complex system. These spatiotemporal profiles are useful
not only as an analytical tool, but also allow explicit investigation of different parameter settings and forms of
the transfer entropy metric itself. As an example, local transfer entropy is applied to cellular automata, where
it is demonstrated to be a useful method of filtering for coherent structure. More importantly, local transfer
entropy provides the first quantitative evidence for the long-held conjecture that the emergent traveling coher-
ent structures known as particles (both gliders and domain walls, which have analogs in many physical
processes) are the dominant information transfer agents in cellular automata.
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I. INTRODUCTION

Information transfer is widely considered to be a vital
component of complex nonlinear behavior in spatiotemporal
systems, for example, in particles in cellular automata (CAs)
[1-7], self-organization caused by dipole-dipole interactions
in microtubules [8], soliton dynamics and collisions [9],
wave-fragment propagation in Belousov-Zhabotinsky media
[10], solid-state phase transitions in crystals [11], influence
of intelligent agents over their environments [12], and induc-
ing emergent neural structure [13]. The very nature of infor-
mation transfer in complex systems is a popular topic itself,
for example, in the conflicting suggestions that information
transfer is maximized in complex dynamics [14,15], or alter-
natively at an intermediate level with maximization leading
to chaos [5,16]. Yet while the literature contains many mea-
sures of complexity (e.g., [6,17]), quantitative studies of in-
formation transfer are comparatively absent.

Information transfer is popularly understood in terms of
the aforementioned recognized instances, which suggest a
directional signal or communication of dynamic information
between a source and receiver. Defining information transfer
as the dependence of the next state of the receiver on the
previous state of the source [18] is typical, though it is in-
complete according to Schreiber’s criteria [19] requiring the
definition to be both directional and dynamic. In this paper,
we accept Schreiber’s definition [19] of (predictive) informa-
tion transfer as the average information contained in the
source about the next state of the destination that was not
already contained in the destination’s past. This definition
results in the measure for information transfer known as
transfer entropy [19], quantifying “the statistical coherence
between systems evolving in time” in a directional and dy-
namic manner.

We derive a measure of local information transfer from
this existing averaged information-theoretical measure,
transfer entropy. Local transfer entropy characterizes the in-
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formation transfer into each spatiotemporal point in a given
system as opposed to a global average over all points in an
information channel. Local metrics within a global average
are known to provide important insights into the dynamics of
nonlinear systems [20]: here, the local transfer entropy pro-
vides spatiotemporal profiles of information transfer, useful
analytically in highlighting or filtering “hot spots” in the in-
formation channels of the system. The local transfer entropy
also facilitates close study of different forms and parameters
of the averaged metric, in particular, the importance of con-
ditioning on the past history of the information destination,
and the possibility of conditioning on other information
sources. Importantly, through these applications the local
transfer entropy provides insights that the averaged transfer
entropy cannot.

We apply local transfer entropy to CAs: discrete dynami-
cal systems consisting of an array of cells which each syn-
chronously update their state as a function of the states of a
fixed number of spatially neighboring cells using a uniform
rule. CAs are a classic example of complex behavior, and
have been used to model a wide variety of real world phe-
nomena (see [3]). In particular, we examine elementary CAs
(ECA): one-dimensional (1D) CA using binary states, deter-
ministic rules, and one neighbor on either side (i.e., cell
range r=1). (For more complete definitions, including that of
the Wolfram rule number convention for describing update
rules, see [21]).

CAs are selected for experimentation here because they
have been the subject of a large body of work regarding the
qualitative nature of information transfer in complex systems
[1-7]. As will be described here, there are well-known spa-
tiotemporal structures in CAs which are qualitatively widely
accepted as being information transfer agents; this provides
us with a useful basis for interpreting the quantitative results
of our application. The aforementioned studies revolve
around emergent structure in CAs: particles, gliders, and do-
mains. A domain may be understood as a set of background
configurations in a CA, any of which will update to another
such configuration in the absence of a disturbance. Domains
are formally defined within the framework of computational
mechanics [22] as spatial process languages in the CA. Par-
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ticles are qualitatively considered to be moving elements of
coherent spatiotemporal structure, in contrast to a back-
ground domain (see [23] for a discussion of the term “coher-
ent structure” referring to particles in this context). Gliders
are particles which repeat periodically in time while moving
spatially (repetitive nonmoving structures are known as
blinkers). Formally, particles are defined as a boundary be-
tween two domains [22]; as such, they can also be termed as
domain walls, though this is typically used with reference to
aperiodic particles. It is widely suggested that particles form
the basis of information transmission, since they appear to
facilitate communication about the dynamics in one area of
the CA to another area (e.g., [5]). Furthermore, their interac-
tions or collisions are suggested to form the basis of infor-
mation modification, since the collisions appear to combine
the communications in some decision process about the dy-
namics. In particular, these metaphors are found in studies of
Turing universal computation with particles used to facilitate
the transfer of information between processing elements
(e.g., Conway’s Game of Life [24] and see the general dis-
cussion in [3]); analyses of CAs performing intrinsic, univer-
sal, or other specific computation [1,2,22,25]; studies of the
nature of particles and their interactions (i.e., collisions)
[1,4]; and attempts to automatically identify CA rules which
give rise to particles, e.g., [6,26], suggesting these to be the
most interesting and complex CA rules. Despite such inter-
est, no study has quantified the information transfer on aver-
age within specific channels or at specific spatiotemporal
points in a CA, nor quantitatively demonstrated that particles
(either in general, or gliders or domain walls as subclasses)
are in fact information transfer agents. (A rudimentary at-
tempt was made via mutual information in [5], however, we
show that this is a symmetric measure not capturing direc-
tional transfer).

We hypothesize that application of a measure of local
information transfer into each spatiotemporal point in CAs
would reveal particles as the dominant information transfer
agents. Our results would have wide-ranging implications
for the real-world systems mentioned earlier, given the
power of CAs as model systems of the real world and the
obvious analogy between particles in CAs and coherent spa-
tiotemporal structures and hypothesized information transfer
agents in other systems (e.g., known analogs of particles in
physical processes such as pattern formation and solitons
[4,27]; also waves of conformational change are said to per-
form signaling in microtubules [8]). Where no CA model
exists for a given system, our presentation of local transfer
entropy is generic enough to still be directly applicable for
investigation of that system, guided by the method of appli-
cation to CAs.

Finally, several methods already exist for filtering the im-
portant structural elements in CAs [6,22,23,28], which pro-
vide another important basis for comparison of our spa-
tiotemporal local information transfer profiles (which can
also be viewed as a method of filtering). These methods in-
clude: finite state transducers to recognize the regular spatial
language of the CA [22,25]; local information (i.e., local
spatial entropy rate) [28]; displaying executing rules with the
most frequently occurring rules filtered out [6]; and local
statistical complexity and local sensitivity [23]. All of these
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successfully highlight particles. Hence, filtering is not a new
concept; however, the ability to filter for information transfer
could provide the first thoroughly quantitative evidence that
particles are the information transfer elements in CAs. Addi-
tionally, it would provide insight into information transfer in
each specific channel or direction in the CA allowing more
refined investigation than the single measures of other meth-
ods, and should reveal interesting differences in the parts of
the structures highlighted.

We begin by providing background on required
information-theoretical concepts, and subsequently introduce
transfer entropy and derive the local transfer entropy from it.
We also derive two distinct forms of the transfer entropy,
namely, apparent and complete, to be studied from a local
viewpoint. The local transfer entropy is then applied to
ECAs, highlighting particles (both gliders and domain walls)
as expected, and so providing the first quantitative evidence
for the widely accepted conjecture that these are the domi-
nant information transfer entities in CAs. The profiles also
provide insights into the parameters and forms of the transfer
entropy that its average is shown to be incapable of produc-
ing. We conclude with a summary of the important findings,
compare our spatiotemporal profiles to other CA filtering
methods, and describe further investigations we intend to
perform with this metric.

II. INFORMATION-THEORETICAL QUANTITIES

Information theory (e.g., see [29]) has proved to be a
useful framework for the design and analysis of complex
self-organized systems (for example, see an overview in [30]
and specific examples in [6,12,13,17,31]). This success, in
addition to the highly abstract nature of information theory
(which renders it portable between different types of com-
plex systems), and its general ease of use, are reasons under-
lying its position as a leading framework for the analysis and
design of complex systems.

The fundamental quantity is the Shannon entropy, which
represents the uncertainty associated with any measurement
x of a random variable X (logarithms are in base 2, giving
units in bits): H(X)=-2 p(x)log, p(x). The conditional en-
tropy of X given Y is the average uncertainty that remains
about x when y is known: H(X|Y)=-2, p(x,y)log, p(x|y).
The mutual information between X and Y measures the av-
erage reduction in uncertainty about x that results from learn-
ing the value of y, or vice versa as follows:

K&H=2pwwb&lyﬁl

, 1
oy p)p(y) ()

I(X:;Y)=H(X) - HX|Y)=H(Y) - H(Y|X).  (Ib)

The conditional mutual information between X and Y
given Z is the mutual information between X and Y when Z
is known.

I(X;Y|Z2)=H(X|Z) - H(X

Y,Z). (2)

The entropy rate (denoted as /,,) [32] is the limiting value
of the conditional entropy of the next state x,,; of X given
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(k=

knowledge of the previous k-1 states x, (up to and in-

cluding time n, i.e., x,_j4s to x,) of X.

h,, = lim H(xn+1|x(k_1)). (3)

k—o0

III. LOCAL INFORMATION TRANSFER

It is natural to look to information theory for the concept
of information transfer. As such, we adopt transfer entropy
from this realm and subsequently derive local transfer en-
tropy from it. Additionally, we provide comments on the pa-
rameters of the transfer entropy, and present the concepts of
apparent and complete transfer entropy, and self-information
transfer.

A. Transfer entropy

As alluded to earlier, mutual information has been some-
thing of a de facto measure for information transfer in com-
plex systems (e.g., [6,14,33]). A major problem however is
that mutual information contains no inherent directionality.
Attempts to address this include using the previous state of
the “source” variable and the next state of the “destination”
variable (known as time-lagged mutual information). How-
ever, Schreiber [19] points out that this ignores the more
fundamental problem that mutual information measures the
statically shared information between the two elements. (The
same criticism applies to equivalent non-information-
theoretical definitions such as that in [18].)

To address these inadequacies Schreiber introduced trans-
fer entropy [19], the deviation from independence (in bits) of
the state transition (from the previous state to the next state)
of an information destination X from the (previous) state of
an information source Y.

() 1,0

p( 1|xn syn
Trox= S pluiog, RS

u, p xn+l| n

Here n is a time index, u, represents the state transition tuple
(Xe1» ,(1]()’ y(l)) and x(k and y(l represent the k and [ past
values of x and y up to and including time n (with k,I=1
being default choices). Schreiber points out that this formu-
lation of the transfer entropy is a truly dynamic measure, as
a generalization of the entropy rate to more than one element
to form a mutual information rate. The transfer entropy can
be viewed as a conditional mutual information [34] [see Eq.
(2)], casting it as the average information contained in the
source about the next state X’ of the destination that was not
already contained in the destination’s past.

Ty_x=1Y;X'|X)= HX'|X) - HX'|X.Y). (5)

This could be interpreted (following [30,33]) as the diversity
of state transitions in the destination minus assortative noise
between those state transitions and the state of the source.
Importantly, as an information theoretic measure based on
observational probabilities, the transfer entropy is applicable
to both deterministic and stochastic systems.

Transfer entropy has been used to characterize informa-
tion flow in sensorimotor networks [13] and with respect to

PHYSICAL REVIEW E 77, 026110 (2008)

information closure [35] in two recent studies. We note the
alternative perturbation-based candidate information flow for
quantifying information transfer from the perspective of cau-
sality rather than prediction; we intend to compare transfer
entropy to this measure in future work. Furthermore, a sepa-
rate notion of information flow in CAs was introduced in
[28] (connected to the local information though not used for
filtering). There are several fundamental problems with this
formulation however: it is only applicable to reversible CAs,
only has meaning as information flow for deterministic me-
chanics, and is not able to distinguish information flow any
more finely than information from the left and the right.

In this paper, we accept Schreiber’s formulation of trans-
fer entropy [Eq. (4)] as a theoretically correct quantitative
definition of information transfer, from a predictive or com-
putational perspective. However, this quantitative definition
has not yet been unified with the accepted specific instances
of information transfer (e.g., particles in CAs); these in-
stances are local in space and time and to be investigated
require a local measure of information transfer. In presenting
local transfer entropy here, we seek to unify the apparently
correct quantitative formulation of information transfer (i.e.,
transfer entropy) with accepted specific instances of informa-
tion transfer.

B. Local transfer entropy

To derive a local transfer entropy measure, we first note
that Eq. (4) is summed over all possible state transition
tuples u,=(x,1, xflk),y ), weighted by the probability of ob-
serving each such tuple. This probability p(u,) is operation-
ally equivalent to the ratio of the count of observations c(u,,)
of u,, to the total number of observations N made: p(u,)
=c(u,)/N. To precisely compute this probability, the ratio
should be composed over all realizations of the observed
variables (as described in [36]); realistically however, esti-
mates will be made from a finite number of observations.
Subsequently, we replace the count by its definition c(u,,)
—EC(””)I leaving the substitution p(u,,)= (EC(”” 1)/N into Eq.
(4) as follows:

: cuy)
Ty_x= ]T/E ( > 1)

u a=1

POl )

6
p(xn+1 |xn ( )

n

The log, term may then be brought inside this inner sum as
follows:

c(u,)

Ty x= _E E log

p(xn+] |xn ’yil]))

p(-xn+l |xn (7)

This leaves a double sum running over each actual obser-
vation a for each possible tuple observation u,, which is
equivalent to a single sum over all N observations as follows:

N k)
I Pely )
Ty_x==21o o 8)
N p (-xn+l|xn )

It is clear then that the transfer entropy metric is a global
average (or expectation value) of a local transfer entropy at
each observation as follows:

026110-3



LIZIER, PROKOPENKO, AND ZOMAYA

space/agents
agent X, [ neke1
| agentX, | :
D i n-1+1
IS time
_____ n-1
OO |
nt+l
D —’: —————————— ;' ———————————— >

FIG. 1. Local transfer entropy #(i,j,n+1,k,[) is the information
transferred from an [/ sized block of the source cell X;_; to the
destination cell X; at time step n+1, conditioned on k past states of
the destination cell. Note: |j| =r for CAs.

TY—»X = <tY—>X(n + 19k9 l)>’ (93)

k 1
p(xn+l|x1(1 )’y1(1))

+0) o0)

tyﬁx(n + 1,k,l) = 10g2 (x
n+1

The measure is local in that it is defined at each time n for
each destination element X in the system and each causal
information source Y of the destination. This method of
forming a local information-theoretic measure by extracting
the log, term from a globally averaged measure is used less
explicitly for the local excess entropy [36], the local statisti-
cal complexity [23,36], and the local information [28]. It is
applicable to any such information-theoretic metric: we form
the local (time-lagged) mutual information between the
source and destination variables from Eq. (1a) as

0
PO, s Xns1)

m(y Xppp) =logy ————-, (10)
’ PP’

and similarly rewrite Eq. (5) as the expectation value of a
local conditional mutual information:
! (k
=m0 x|,
For lattice systems such as CAs with spatially ordered

sources and destinations, we represent the local transfer en-
tropy to cell X; from X;_; at time n+1 as

TY—>X

xlﬂ xl}’l’xl— n
t(i,j,n+1kl)=102’%d (11)
( ”H,1|)C

Similarly, the local (time-lagged) mutual information can be
represented as m(i,j,n+1,)=m(x —),n’ X,+1). Figure 1 shows
the local transfer entropy in a spatiotemporal system. The
metrics are defined for every spatiotemporal destination
(i,n), forming a spatiotemporal profile for every information
channel or direction j where sensible values for CAs are
within the cell range |j| = r. Notice that j represents the num-
ber of cells from the source to the destination, e.g., j=1
denotes transfer across one cell to the right per unit time step.
We use T(j,k,I) to represent the average over all spatiotem-
poral points on the lattice.
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Importantly, note that the destination’s own historical val-
ues can indirectly influence it via the source, which may be
mistaken as an independent flow of information from the
source. This is only possible in systems such as CAs with
bidirectional information transfer. Such self-influence is a
nontraveling form of information (in the same way as stand-
ing waves are to energy); it is essentially static and can be
viewed as the trivial part of information transfer. This non-
traveling information is eliminated from the measurement by
conditioning on the destination’s history x . Yet any self-
influence transmitted prior to these k values will not be
eliminated; we generalize comments on the entropy rate in
[19] to suggest that taking the asymptote k— o is most cor-
rect for agents displaying non-Markovian dynamics (when
considering their time series in isolation). As such, we for-
malize the local transfer entropy as
plx zn+1|x§kn)’ fl—>1n)

( +1|x(k) ’ (12)

t(i,j,n+1,0) = I}im log,
and similarly ty_x(n+1,0)=limy_., ty_x(n+1,k,l) for a
single source-destination pair. Computation at this limit is
not feasible in general, so we retain fy_x(n,k,l) and
t(i,j,n,k,l) for estimation with finite k.
Also, we drop [ from the notation [e.g., #(i,j,n) and
t(i,j,n,k)] where the default setting of /=1 is used to mea-
sure transfer from the single previous state only.

C. Complete and apparent transfer entropy

The averaged transfer entropy is constrained between 0
and log, b bits (where b is the number of possible states for
a discrete system): as a conditional mutual information, it
can be either larger or smaller than the corresponding mutual
information [29]. The local transfer entropy however is not
constrained so long as it averages into this range: it can be
greater than log, b for a significant local information transfer,
and can also, in fact, be measured to be negative. Local
transfer entropy is negative where (in the context of the his-
tory of the destination) the probability of observing the ac-
tual next state of the destination given the value of the source
P(Xi 1 |xfky2 o). n) is lower than that of observmg that actual
next state independently of the source p(x;,.; |x ). In this
case, the source element is actually mlsleadmg about the
state transition of the destination. It is possible for the source
to be misleading in this context where other causal informa-
tion sources influence the destination, or in a stochastic sys-
tem. [Similarly a local mutual information, Eq. (10), can be
negative. |

Importantly, the transfer entropy may be conditioned on
other possible information sources Z [19] [becoming
I(Y;X'|X,Z)], to eliminate their influence from being mis-
taken as that of the source Y. To be explicit, we label calcu-
lations conditioned on no other information contributors
[e.g., Eq. (12)] as apparent transfer entropy.

For ECAs, conditioning on other possible information
sources logically means conditioning on the other cells in the
destination’s neighborhood, which we know to be causal in-
formation contributors. First, we represent the joint values of
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the neighborhood of the destination x;,,;, excluding the
source for the transfer entropy calculation x,_;,, and the pre-
vious value of the destination x;,, as

—j.n

v;,j,llz{xi+q,n|v q:_quS +r,q * _j’0}7 (13)

where r is the range of causal information contributors (i.e.,
the cell range for CAs). We then derive local complete trans-
fer entropy as the information contained in the source about
the next state of the destination that was not contained in the
destination’s past or in other causal information sources v; ; ,
as follows:

k
Pt ¥ Xy V1)

k
p(xi,n+l |x§,r2’ v;,j,n)

t.(i,j,n+ 1)=I}im log, (14)
Again, 1.(i,j,n,k) denotes finite k estimates. Equation (14)
specifically considers systems where only immediately pre-
vious source values can be causal information contributors:
here under complete conditioning /> 1 cannot add any infor-
mation to the source. In deterministic systems (e.g., ECAs),
complete conditioning renders 7.(i,j,n) = 0: it is not possible
for the information source to be misleading when all other
causal information sources are being considered. 7,(j) repre-
sents the average over all spatiotemporal points on the lat-
tice. Complete transfer entropy can be constructed for any
system by conditioning out all causal information contribu-
tors apart from the information source under consideration.

D. Summed information transfer profiles

We label the case j=0 as self-information transfer, where
the “source” is the immediate past value of the destination.
We condition this calculation on the k values before the /
source values so as not to condition on the source. Self-
information transfer computes the information contributed
by the previous state of the given cell about its next state that
was not contained in its prior history; this can be thought of
as traveling information with an instantaneous velocity of
zero. This is not a particularly useful quantity in and of itself,
however, it helps to form a useful profile with transfer entro-
pies for j#0 in the summed local information transfer pro-
files. These are defined for apparent and complete transfer
entropy, respectively, as

r

t,(i,n k1) = 2 1(i,j,n, k1), (15a)
Jj==r
t.(isnk) = D t.i,j.n.k). (15b)

j=—r

IV. RESULTS AND DISCUSSION

The local transfer entropy metrics were studied with sev-
eral important ECA rules. We investigate the variation of the
profiles as a function of k, examine the changing nature of
the profiles with ECA type, and compare the apparent and
complete metrics. Each instance was run from an initial ran-
domized state of 10000 cells, with the first 30 time steps
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eliminated to allow the CA to settle, and a further 600 time
steps captured for investigation. All results were confirmed
by at least 10 runs from different initial randomized states,
and periodic boundary conditions were used. We fixed / at 1:
values of />1 are irrelevant for the complete metric when
applied to CAs, and for the apparent metric we are interested
in information directly transferred at the given local time
step only. For spatially ordered systems with homogeneous
agents such as CAs, it is appropriate to estimate the prob-
ability distributions from all spatiotemporal observations
(i.e., from the whole CA) of the corresponding channel
rather than only the source-destination pair under measure-
ment.

We concentrate on rule 110 (a complex rule with several
configurations of regular particles, or gliders) and rule 18 (a
chaotic rule with irregular particles, or domain walls); the
rule classification here is from [21]. The selection of these
particular rules allows comparison with the results of other
filtering techniques. We expect local information transfer
profiles to highlight both regular and irregular particles, the
important elements of structure in CAs which are conjec-
tured to be the information transfer agents.

A. Base comparison cases

For rule 110 the raw states of a sample CA run are dis-
played in Fig. 2(a) (all figures were generated using modifi-
cations to [37]). As base cases we measured (time-lagged)
local mutual information m(i,j,n), and local apparent and
complete transfer entropies with the default value of k=1:
t(i,j,n,k=1) and ¢.(i,j,n,k=1). The base comparison case
of local mutual information is analogous to that with globally
averaged measures in [19], yet the local profiles yield a more
detailed contrast here than averages do. Note that k=1 is the
only value used in [19] (in less coupled systems) and the
later applications of the transfer entropy in [13,34,35]. The
local profiles generated with j=1 (i.e., one cell to the right
per unit time) for these base cases are shown in Fig. 2. These
measures are unable however to distinguish gliders from the
background here with any more clarity than the raw CA plot
itself. [The negative components of m(i,j,n) and t(i,j,n,k
=1), not shown, are similarly unhelpful]. These basic metrics
were also unsuccessful with other values of j and with other
CA rules; this provides explicit demonstration that they are
not useful as measures of information transfer in complex
systems.

B. Gliders as dominant information transfer agents

Experimentally, we find our expectation of gliders being
highlighted as dominant information transfer against the do-
main once k=6 for ECA rule 110 (for both the complete and
apparent metric, in both channels j=1 and —1). Figure 3
displays the local complete transfer entropy profiles com-
puted here using k=6 (we return to examine the apparent
metric in Sec. IV D). Note that higher values of local com-
plete transfer entropy are attributed by each measure to the
gliders moving in the same macroscopic direction of motion
as the direction of information transfer being measured, as is
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FIG. 2. Base comparison metrics incapable of quantifying local
information transfer (one cell to the right). Application to raw states
of ECA rule 110 shown in (a) (86 time steps displayed for 86 cells,
time increases down the page for all CA plots). (b) Local (time-
lagged) mutual information m(i,j=1,n), positive values only (all
figures scaled with 16 colors) with maxima 0.48 bits (black),
minima 0.00 bits (white). (c) Local complete transfer entropy
t.(i,j=1,n,k=1), maxima 1.28 bits (black), minima 0.00 bits
(white). (d) Local apparent transfer entropy #(i,j=1,n,k=1), posi-
tive values only, maxima 0.67 bits (black), minima 0.00 bits
(white).

expected from such measures. Also, the summed local com-
plete transfer in Fig. 3(b) gives a filtered plot very similar to
that found for rule 110 using other techniques (see [6,23]).
Simply relying on the average transfer entropy values does
not provide us these details (see Sec. IV E).

Figure 4(a) displays a closeup example of a right moving
glider in ECA rule 110, which application of the local com-
plete transfer entropy in Fig. 4(b) reveals is composed of a
repeating series of two consecutive information transfers to
the right followed by a pause. Although one may initially
suggest that the glider structure includes the points marked
“x,” careful consideration of exactly where a source can add
information to that contained in the past of the domain sug-
gests otherwise. Consider the point one cell to the left of
those marked “x,” the second of the two consecutive trans-
fers to the right. To compute #,(i,j=1,n+1,k=6) (one cell to
the right) at this point, we first compute
(X e |xl(.ﬁ1:6),x,»_l,n,di,jzlyr,,): 1.0 (since the system is deter-
ministic) and p(x; 4 |xfkn=6 .d; jo1,,,,)=0.038. The local trans-
fer entropy will be high here because the probability of ob-
serving the actual next state of the destination is much higher
when the source is taken into account than when it is not;
correspondingly using Eq. (14) we have r.(i,j=1,n+1,k
=6)=4.7 bits at this point. The points marked “x” are effec-

(b) (d)

FIG. 3. Local transfer entropy with k=6 highlights gliders. Ap-
plication to raw states of ECA rule 110 in (a) (86 time steps for 86
cells): (b) Summed local complete transfer entropy profile
t,.(i,n,k=6), maxima 8.22 bits (black), minima 0.00 bits (white).
(c) Local complete transfer entropy f.(i,j=1,n,k=6) (one cell to
the right), maxima 4.95 bits, minima 0.00 bits. (d) Local complete
transfer entropy 7.(i,j=—1,n,k=6) (one cell to the left), maxima
6.72 bits, minima 0.00 bits.

tively predictable from the temporal pattern of the preceding
domain however, and so do not contain significant informa-
tion transfer. Interestingly, the points containing significant
information transfer are not necessarily the same as those
selected as particles by other filtering methods; e.g., finite
state transducers (using left to right scanning by convention

(a) (b) (c)

FIG. 4. Closeup example of a glider in ECA rule 110 (x’s and
O’s used only for visual alignment). 18 time steps displayed for 12
cells: (a) Raw CA. (b) Local complete transfer entropy 7.(i,j
=1,n,k=6) (one cell to the right), maxima in view 4.70 bits (gray),
minima 0.00 bits (white). (c) Local apparent transfer entropy #(i,j
=—1,n,k=6) (one cell to the left), negative values only, minima in
view —2.04 bits (gray), maxima 0.00 bits (white).
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[25]) would identify points two cells to the right of those
marked “x” as part of the glider.

To understand why k=6 was useful in this case, we con-
sider an infinite temporally periodic domain, with period say
p. (This serves as an extension of the demonstration in [19]
of zero average transfer in a lattice of spatial and temporal
period 2 using k=1 to a domain of arbitrary period.) For the
time series of a single cell there, the number of states an
observer must examine to have enough information to deter-
mine the next state is limited by the period p (as per the
synchronization time 7 in [38]). Local transfer entropy mea-
surements with k=p—1 would therefore not detect any ad-
ditional information from the neighbors about the next state
of the destination than is already contained in these k previ-
ous states (correctly inferring zero transfer). Using k<<p—1
on the other hand may attribute the nontraveling self-
influence of the destination to the source. Taking k=p—1
provides a sufficient (Markovian) condition for eliminating
this nontraveling information in an infinite periodic domain,
rather than requiring the full asymptote k— . Establishing a
minimal condition is related to the synchronization time 7 for
the entropy rate [38], though is slightly more complicated
here because we need to consider the source cell.

However, a minimal correct value for k does not exist for
a given system with bidirectional communication in general.
The above argument was only applicable for domains which
are periodic and infinite, and the existence of any gliders
prevents a periodic domain from being infinite. Where the
history of a given destination includes encountering gliders
at some point, this partial knowledge of nearby glider activ-
ity is an important component in the probability distribution
of the next state of that destination. Yet there is no limit on
how far into the future a previous glider encounter may in-
fluence the states of a destination (because of the system’s
capacity for bidirectional communication). That is to say,
there is no Markovian condition for eliminating the nontrav-
eling information in general in such systems; as such the
limit k— o0 should be taken in measuring the transfer en-
tropy. While using only the condition k=p—1 is not com-
pletely correct, it will eliminate the nontraveling information
in the domain pertaining to the periodic structure only.
Where this part is dominant in the domain, as in for ECA
rule 110 here, the gliders are likely to be highlighted against
the periodic domain with k= p—1. (This could be considered
a rule of thumb for determining a minimum useful k.)

While the results for k=6 visually correlate with previous
filtering work, using the limit k— % would be more correct.
Achieving this limit is not computationally feasible, but rea-
sonable estimates of the probability distributions can be
made: Fig. 5 displays the local complete transfer entropy
profiles computed for ECA rule 110 using k=16. These plots
highlight information transfer almost exclusively now in the
direction of the macroscopic glider motion, which is even
more closely aligned with our expectations than was seen for
k=6. Importantly, much less of the gliders are highlighted
than for k=6 or other techniques, and the larger values of
transfer entropy are concentrated around the leading time
edges of the gliders. This suggests that the leading glider
edges determine much of the following dynamics which then
comprise mainly nontraveling information. Note also that the
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FIG. 5. Estimating local transfer entropy profiles for k— o with
k=16 for the raw states of ECA rule 110 in Fig. 3(a) (86 time steps
for 86 cells): (a) Summed local complete transfer entropy profile
t,(i,n,k=16), maxima 14.7 bits (black), minima 0.00 bits (white).
(b) Local complete transfer entropy 7.(i,j=1,n,k=16) (one cell to
the right), maxima 9.99 bits, minima 0.00 bits. (¢) Local complete
transfer entropy 7.(i,j=—1,n,k=16) (one cell to the left), maxima
10.1 bits, minima 0.00 bits. (d) Local apparent transfer entropy
t(i,j=—1,n,k=16) (one cell to the left), positive values only,
maxima 10.4 bits, minima 0.00 bits.

“vertical” glider [at the left of Fig. 3(b), with spatial velocity
zero] is not highlighted now. Its cell states are effectively
predictable from their past, observable once k becomes
greater than its vertical period.

Another interesting effect of the existence of gliders is
that the next state of a cell in the domain is not completely
determined by its periodic history. The neighboring informa-
tion sources have the capability to add information about the
next state of that destination, by signaling whether a glider is
incoming or not. That is to say, it is possible to measure a
nonzero information transfer inside finite domains, effec-
tively indicating the absence of a glider (i.e., that the domain
shall continue). For ECA rule 110 in Fig. 3, we do in fact
measure small but nonzero information transfer at certain
points in the periodic background domain (small enough to
appear to be zero). These values tend to be stronger in the
wake of real gliders: since gliders are often followed by oth-
ers, there is a stronger indication of their absence. Consider
the points in the periodic domain marked by “O” in Fig. 4:
these have the same history as the previously discussed
points of high information transfer; their neighborhood
(excluding the source on the left) is also the same.
Here, we compute p(x;,, |xl(,’k:@,x,»_l’,,,d,»,jﬂ,,,n)= 1.0 and
p(x,-,,m|x§kn:6),di,jzl,,,n)=0.96: the probability of observing
the actual next state of the destination becomes slightly
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higher when the information source on the left is taken into
account. As such, we have ¢.(i,j=1,n+1,k=6)=0.057 bits
to the right at this point, demonstrating the possibility for
small nonzero information transfer in the periodic domain.
This effect occurs for both the complete and apparent mea-
sures and is not a finite k effect.

Also, note in Fig. 5 there is some information transfer in
the orthogonal direction for each glider. Some is expected to
vanish as k— o0, yet some will remain for a similar reason to
the nonzero transfer in domains, i.e., considering the source
does add information about the next state of the destination.
Importantly, this orthogonal transfer is not as significant as
that in the macroscopic glider direction in terms of magni-
tude and coherence.

Given these effects, we describe gliders as the dominant,
as opposed to the only, information transfer agents here.
(These findings have also been verified for ECA rule 54,
another complex rule containing gliders.) While these pro-
files appear similar to other filtering work in some respects, it
is only local transfer entropy profiles that provide quantita-
tive evidence that gliders are the dominant information trans-
fer agents in CAs.

C. Domain walls as dominant information transfer agents

We also investigated ECA rule 18, known to contain do-
main walls against the background. Application of local
complete transfer entropy to the sample run in Fig. 6(a) high-
lights the domain walls as containing strong information
transfer in each channel [e.g., see t.(i,j=1,n,k=16) in Fig.
6(c)]. A full picture is given by the summed profile in Fig.
6(b): as expected, our results quantitatively confirm the do-
main walls as dominant information transfer agents against
the domain. We have observed similar results for ECA rule
146.

Importantly, the domain contains a significant level of in-
formation transfer here. In fact, there is a pattern to the trans-
fer in the domain of spatial and temporal period 2 which
corresponds very well to the period-2 spatial € machine gen-
erated to recognize the domain of rule 18 in [22]. Every
second site of the domain in the raw CA is a “0,” and the
alternate site is either a “0” or a “1” (depending on the neigh-
borhood configuration). At every second site with the “0”
values, there is vanishing local complete information transfer
(for either incoming channel j=1 or —1) because the state of
the cell is completely predictable from this temporal periodic
pattern in its past. At the alternate sites, the local complete
information transfer is approximately 1 bit from both incom-
ing channels j=1 and —1 (by limited inspection the measure-
ments were between 0.96 and 1.04 bits with k=16). At these
points (in an infinite domain), both alternative next states are
equally likely (in the context of the destination’s past and the
rest of the CA neighborhood) before considering the source;
when it is considered, the next state is determined and 1 bit
of information is added.

Domain walls involve the meeting of two domains which
are out of phase: motion of the wall can be viewed as one
domain intruding into the other. At such points, we observe
high transfer entropy in the direction of movement because
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FIG. 6. Local transfer entropy profiles for raw states of ECA
rule 18 in (a) (55 time steps for 55 cells displayed) highlight domain
walls. (b) Summed local complete transfer entropy profile
t.(i,n,k=16), maxima 13.5 bits (black), minima 0.00 bits (white).
(c) Local complete transfer entropy #.(i,j=1,n,k=16) (one cell to
the right), maxima 14.9 bits, minima 0.00 bits. (d) Local apparent
transfer entropy #(i,j=1,n,k=16) (one cell to the right), positive
values only, maxima 11.9 bits, minima 0.00 bits.

the information source (as part of the intruding domain) adds
much information about the next state of the destination that
was not in the destination’s past or the rest of the CA neigh-
borhood. This highlighting of the domain walls is somewhat
similar to that produced by other filtering techniques, al-
though an important distinction to [6,22,28] is that this tech-
nique highlights the domain wall areas as only being a single
cell wide: as described above, a single cell width is all that is
required to explain the meeting of two domains of rule 18
from a temporal perspective.

We also applied these measures to ECA rule 22 (not
shown), plots of whose raw states appears similar to rule 18
at first glance. However, this rule has not been found to
contain structure such as domain walls [23]. Similar to those
results, local transfer entropy measures significant informa-
tion transfer at many points in the CA, but does not find any
coherent structure to this transfer.

D. Apparent transfer entropy

Profiles generated with the local apparent transfer entropy
contain many of the same features as those for the complete
metric: gliders and domain walls are highlighted as the domi-
nant information transfer agents in their direction of motion;
large values of k are required to reasonably approximate the
probability distribution functions; and nonzero information
transfer is still possible in domains and in orthogonal direc-
tions to macroscopic glider motion.
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For ECA rule 110, Fig. 5(d) displays the positive values
for #(i,j=—1,n,k=16) (one cell to the left), which appears
almost identical to the corresponding profile for the complete
metric in Fig. 5(c). The summed apparent profile (not shown)
is also very similar to the summed complete profile in Fig.
5(a). A major distinction is observed however when examin-
ing negative values for the apparent profiles: when measured
in a directional orthogonal to macroscopic glider motion, it
can report negative as well as positive values [see Fig. 4(c)].
Negative values occur where the source, still part of the do-
main, is misleading about the next state of the destination.

As an example, consider the glider in Fig. 4(a).
At the positions to the left of those marked “x,” we confirm
a strong positive value for the local apparent transfer entropy
t(i,j=1,n+1,k=6) (2.65 bits), as per the complete metric.
However, Fig. 4(c) displays large negative values of
t(i,j=—1,n+1,k=6) (the orthogonal channel to glider mo-
tion) at these same positions. There we compute
PG |37 x,,,)=0.038 and p(x; e [x=")=0.16. The
local apparent transfer entropy is negative here because the
probability of observing the actual next state of the destina-
tion is much lower when the source on the right is taken into
account than when it is not (i.e., the source is misleading). As
such, Eq. (11) gives t(i,j=—1,n+1,k=6)=-2.05 bits at this
point. Compare this to the complete metric for this channel,
t(i,j=—1,n+1,k=6), which measures 0.00 bits here be-
cause the source at the right (still in the domain) cannot add
any information not contained in the other neighbor (which
drives the glider). Note that the local apparent transfer en-
tropy in the direction of glider motion was more informative
than that in the orthogonal direction was misleading. Also,
note that negative values of the local metric are not found for
the orthogonal direction at every point in the glider.

Another distinction is observed for ECA rule 18. As ex-
pected, the apparent metric identifies high positive transfer
entropy in the direction of domain wall motion [see Fig. 6(d)
for the j=1 channel], and negative transfer entropy in the
orthogonal direction to domain wall motion (not shown).
However, the apparent metric finds vanishing transfer en-
tropy throughout the domain (for both channels j=—1 and 1),
in stark contrast to the periodic pattern found with the com-
plete metric. At every second site with the “0” values, the
state of the destination is completely predictable from its
past, so we have =0 bits as for .. However, at the alternate
sites both possible next states are equally likely in the con-
text of the destination’s history and remain so when consid-
ering the source: as such we find 7=0. It is only when includ-
ing the rest of the neighborhood in the context (with the
complete metric) that one observes the source to be adding
1 bit of information. This example brings to mind discussion
on the nature of information transfer in complex versus cha-
otic dynamics [5,14-16] and suggests that perhaps in chaotic
dynamics, where many sources influence outcomes in a non-
coherent manner, the complete metric may indicate large in-
formation transfer whereas the apparent metric does not (be-
cause other sources obscure the contribution of the source
under consideration).

The apparent and complete metrics are clearly capable of
producing different insights under certain circumstances, and
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FIG. 7. Average transfer entropies versus conditioning length &,
plotted for complete and apparent transfer entropies in channels j
=1 and -1 in ECA rule 110.

both viewpoints are valuable. We are currently investigating
an application of the apparent transfer entropy in combina-
tion with a measure of information storage to identify infor-
mation modification [39].

E. Averaged transfer entropies

We compute the averaged transfer metrics as a function of
k for ECA rule 110 in Fig. 7 so as to check whether similar
insights can be gained from this trend. In fact, only limited
insights are gained here. The average complete transfer en-
tropies decrease with k: an increase is impossible because we
condition out more of the information that appears to come
from the source. The average apparent transfer entropy can
show increases with k however; this is possible with a three-
term entropy [29] where other information sources are not
taken into account. None of these reach a limiting value for
the extent of k measured, suggesting again that k— o° should
be used. Realistically, & is limited (e.g., to k=16 in previous
sections) by the sample size so as to retain a sufficient num-
ber of observations per configuration to reasonably estimate
the probability distribution functions.

The local metrics clearly reveal much about the informa-
tion dynamics of a system that their averages do not. In
particular, these averages tell us nothing of the presence of
glider particles, not to mention that they would be clearly
highlighted once k=6. Also, while the average apparent and
complete metrics appear to be converging to a similar value
in each channel, this belies their important distinctions dis-
cussed earlier.

V. CONCLUSION

We have presented a local formulation of the transfer en-
tropy in order to characterize the information transfer into
each spatiotemporal point in a complex system. Local trans-
fer entropy presents insights that cannot be obtained using
the averaged measure alone, in particular, in providing these
spatiotemporal information transfer profiles as an analytic
tool. Importantly, the local transfer entropy allowed us to
study the transfer entropy metric itself, including the impor-
tance of appropriate destination conditioning lengths & (e.g.,
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that using k—  is most correct), and to contrast the apparent
and complete forms which were introduced here.

On applying the local transfer entropy to cellular au-
tomata, we demonstrated its utility as a valid filter for coher-
ent structure. It differs in comparison to other filtering meth-
ods previously presented for CAs. It provides continuous
rather than discrete values (like [28,23]). It does not follow
an arbitrary spatial preference (unlike [28,22]) but rather the
flow of time only. As described for local statistical complex-
ity in [23], local transfer entropy does not require a new filter
for every CA, but the probability distribution functions must
be recalculated for every CA. Perhaps most importantly, it
provides multiple views of information transfer in each ge-
neric channel or direction (which no other filters do), and
also provides a combined view which matches many impor-
tant features highlighted by other filters. Finally, it highlights
subtly different parts of emergent structure to other filters,
i.e., the leading glider edges facilitating the information
transfer, only the minimal part of domain walls necessary to
identify them, the particles are identified as consisting of
different points due to our temporal approach, and it does not
highlight vertical gliders since they are not traveling infor-
mation.

Most significantly, local transfer entropy provided the first
quantitative support for the long-held conjecture that par-
ticles (both gliders and domain walls) are the information
transfer agents in CAs. This is particularly important because
of analogies between particles in CAs and coherent structure
or hypothesized information transfer agents in physical sys-
tems, such as traveling localizations caused by dipole-dipole
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interactions in microtubules [8] and in soliton dynamics [27].
This formulation of local transfer entropy is ready to be ap-
plied beyond CAs to systems such as these (and including
stochastic systems), where it may prove similar conjectures
about information transfer therein.

This result is important in bringing together the quantita-
tive definition of information transfer (transfer entropy) with
the popular understanding of the concept through widely ac-
cepted instances (such as particles in CAs). The result there-
fore completes the establishment of transfer entropy as the
appropriate measure for (predictive) information transfer in
complex systems. A comparison should be made with a lo-
calization of the “information flow” metric [34] in future
work, in order to explore the differences between its causal
perspective and the predictive or computational perspective
of transfer entropy. In doing so, the limitations of the transfer
entropy metric must be considered. These include that the
transfer entropy should consider only causal information
contributors as the source and as other information contribu-
tors to be conditioned on (in the complete metric). Consid-
ering noncausal sources (e.g., outside the neighborhood in
CAs) has the potential to mistake correlation for information
transfer, and conditioning on noncausal elements could cause
information that was actually part of the transfer to be disre-
garded.

Finally, we are building on this investigation to describe
local measures of information storage and modification also
in a complete local framework for information dynamics in
complex systems (see [39]).
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